Aalta: An LTL Satisfiability Checker over Infinite/Finite Traces

Jianwen Li
Software Engineering
East China Normal University
Shanghai, China
lijwen2748@gmail.com

Yinbo Yao
Software Engineering
East China Normal University
Shanghai, China
snowingsea@gmail.com

Geguang Pu*
Software Engineering
East China Normal University
Shanghai, China
ggpu@sei.ecnu.edu.cn

Lijun Zhang
State Key Laboratory of Computer Science
ISCAS, Beijing, China
zhanglijun79@gmail.com

Jifeng He
Software Engineering
East China Normal University
Shanghai, China
jifeng@sei.ecnu.edu.cn

ABSTRACT
Linear Temporal Logic (LTL) is widely used nowadays in verification and AI. Checking satisfiability of LTL formulas is a fundamental step in removing possible errors in LTL assertions. We present in this paper Aalta, a new LTL satisfiability checker, which supports satisfiability checking for LTL over both infinite and finite traces. Aalta leverages the power of modern SAT solvers. We have conducted a comprehensive comparison between Aalta and other LTL satisfiability checkers, and the experimental results show that Aalta is very competitive. The tool is available at www.lab205.org/aalta.

Categories and Subject Descriptors
F.3.1 [Logics and Verification]: Specifying and Verifying and Reasoning about programs

General Terms
Verification, Algorithms

Keywords
Model Checking, Temporal Logic, Satisfiability

1. INTRODUCTION
Linear Temporal Logic (LTL) was introduced into computer science in [8], as a formal property description language for non-terminating reactive systems. There is by now a rich body of knowledge regarding automated-reasoning support for LTL in the formal-verification community. Our main focus here is on the satisfiability problem, which asks if a given LTL formula has a satisfying model. This basic problem has attracted a fair amount of attention over the past few years, as a main approach to property assurance, which aims at eliminating errors in LTL assertions [9]. Thus, efficient decision procedures for reasoning about LTL formulas are quite desirable in practice.

Researchers in AI are also attracted by the rich expressiveness of LTL, cf. [3]. AI applications, however, are typically interested only in finite traces, while verification applications are typically interested in infinite traces. For instance, temporally extended goals [2] can be regarded as finite desirable traces of states and a plan is correct if its execution succeeds in yielding one of these desirable traces. Therefore, LTL₁ was introduced in [3]; this logic has the same syntax as LTL, but is interpreted over finite traces.

Most works on LTL satisfiability focus on infinite-trace semantics. To check satisfiability over finite traces, one can reduce finite-trace satisfiability to infinite-trace satisfiability [3]; one transforms an LTL₁ formula φ to an LTL formula φ′ such that φ is finite-trace satisfiable iff φ′ is infinite-trace satisfiable. The transformation is simple (linear blow-up), so an LTL₁ satisfiability checker can be easily converted to an LTL₁ satisfiability checker. But LTL₁ satisfiability checking requires searching for a fair cycle, which is not required for LTL₁ satisfiability checking [3]. Thus, a reduction of LTL₁ satisfiability to LTL₁ satisfiability may add unnecessary overhead to LTL₁ satisfiability checking. To overcome this disadvantage, we recently used directly the finite-trace semantics of LTL₁, and proposed a very efficient satisfiability-checking procedure [7].

To support satisfiability checking for LTL on both infinite and finite traces, we present here the tool Aalta, a new LTL satisfiability checker that leverages the power of modern SAT solvers. The framework of Aalta is based on LTL transition systems, which we proposed in previous work [5].

To the best of our knowledge, this is the first tool to directly support LTL satisfiability checking over both infinite and finite traces. We compare our tool empirically with other existed LTL satisfiability solvers. We reach two conclusions from these experiments. First, for satisfiability checking over infinite
trace, Aalta behaves best in the overall performance, but no solver dominates in performance. Second, for satisfiability checking over finite trace, Aalta performs best and has significant performance boost compared to other solvers.

Related work. There have been several approaches to LTL satisfiability checking problem. The model-checking approach reduces LTL satisfiability to LTL model checking by checking the negation of the given formula against a universal model. We use the NuSMV tool [1] as a representative of this strategy. The tableau-based [11] approach applies an on-the-fly search in the underlying automaton transition system. The phi solver is a representative of this approach. The temporal-resolution approach explores the unsatisfiable core using a deductive system [10]. The tool TRP++ [10] is a representative of this approach. Our own approach [5, 7] follows the automata-theoretic approach [12] and reduces satisfiability checking to automaton emptiness checking, which we perform by using two heuristics: on-the-fly search and obligation sets.

The rest of this paper is organized as follows. Section 2 introduces LTL and the algorithms implemented in Aalta. Section 3 describes the architecture of the tool. Section 4 provides experimental results. Finally, Section 5 offers some concluding remarks.

2. PRELIMINARIES

2.1 Linear Temporal Logic

Let AP be a set of atomic properties, and the original definition for the syntax of LTL (and LTL₁) formulas are as follows:

\[\phi ::= \text{ff} \mid \text{tt} \mid a \mid \neg \phi \mid \phi \land \phi \mid X \phi \mid U \phi \]

where \(a \in AP \), \(\phi \) is an LTL formula. Obviously every boolean formula is an LTL formula. Besides, LTL also contains two temporal operators \(X \) (Next) and \(U \) (Until).

In our methodologies, LTL formulas are required to be in NNF (Negative Normal Form), which can be acquired by pushing all negations in front of only atoms. For this purpose, the dual operator of \(U \) is introduced, i.e. the \(R \) (Release) operator, and it holds that \(\neg (\alpha U \phi_2) \equiv \phi_1 R \neg \phi_2 \).

Hence, let \(L = AP \cup \{ \neg a | a \in AP \} \), and LTL formulas are interpreted over infinite words in \(\Sigma = 2^L \). Let \(\xi = \omega_0 \omega_1 \ldots \in \Sigma^\omega \), and we use the notation \(\xi^i = \omega_0 \omega_1 \ldots \omega_{i-1}(i \geq 1) \) to represent the prefix of \(\xi \) before position \(i \) (\(i \) is not included). Also use the notation \(\xi_i = \omega_i \omega_{i+1} \ldots \) to represent the suffix of \(\xi \) from position \(i \) (\(i \) is included). Then \(\xi \models \phi \) iff

- if \(\phi = X \phi_1 \) then \(\xi_1 \models \phi_1 \);
- if \(\xi \models \phi_1 \ U \phi_2 \), then there exists \(i \geq 0 \) such that \(\xi_i \models \phi_2 \) and for all \(0 \leq j < i, \xi_j \models \phi_1 \);
- if \(\xi \models \phi_1 \ U \phi_2 \), then either for all \(i \geq 0 \) it holds that \(\xi_i \models \phi_2 \) or there exists \(j \geq 0 \) such that \(\xi_j \models \phi_1 \) and for all \(0 \leq i < j \) it holds \(\xi_i \models \phi_2 \);

The cases when \(\phi \) are boolean formulas are trivial, and we omit the definitions here.

For LTL₁ formulas interpreted over finite traces, let \(\eta \in \Sigma^* \) and \(|\eta| \) be the length of \(\eta \). The semantics are then defined in a rather straightforward way. For example, \(\eta \models \phi_1 U \phi_2 \)

\[\text{if there exists } 0 \leq i < |\eta| \text{ such that } \eta_i \models \phi_2 \text{ and for all } 0 \leq j < i, \eta_j \models \phi_1 \text{, for } \phi \text{ the NNF forms, a weak next operator } (X_w) \text{ is introduced, readers can refer to [7] for more details.}

2.2 Algorithms

Aalta implements the obligation-based LTL satisfiability checking algorithms that are proposed in our previous work [5, 6, 7]. We first introduce briefly the obligation formula, which is the key concept of our approach and then present the main decision procedure behind Aalta. We also discuss the optimizations by SAT solver adopted in the tool.

Obligation Formula. Given an LTL (and LTL₁) formula \(\phi \), we can extract an obligation formula \(of(\phi) \) by eliminating the temporal operators and keeping only the right part of temporal subformulas. So \(of(\phi) \) is essentially a boolean formula. For example, \(of(X(aUb)) = b \), in which all temporal operators are eliminated and only the right parts of temporal subformulas are extracted. (Here is \(b \).) For more complicated cases, we have \(of(aR(bUb)) = cRd \) and \(of(XXXXa) = a \) and etc. The obligation formula plays a key role in the reduction from LTL satisfiability checking to Boolean SAT one.

Decision Procedure. By leveraging the obligation formula, we can achieve a new LTL satisfiability checking framework based on the LTL (LTL₁) transition system proposed. Summarily, the general checking process can be organized as follows:

1. Construct the LTL (LTL₁) transition system (each state is a formula) in the on-the-fly manner;
2. For LTL checking, if a SCC (Strong Connected Component) containing a formula \(\psi \) is found and the literals collected along the SCC is an assignment of \(of(\psi) \), then we can conclude the input formula is satisfiable;
3. In the worst case, the algorithm returns unsatisfiable after the whole system has been explored.

Optimizations by SAT Solver. The power of obligation formula for the LTL (LTL₁) satisfiability checking is to introduce some optimizations by utilizing SAT solvers to accelerate the checking process. For example, we have proven that if \(of(\phi) \), i.e. the obligation formula of \(\phi \), is satisfiable then \(\phi \) is also satisfiable. This potentially facilitates us to check the formula before the generation of transition system. Moreover, if we add the positional information into the obligation formula, which we denote as \(ofp \), we can also get the acceleration for checking unsatisfiable formulas. Additionally, a complete reduction from LTL₁ checking to SAT solving is proposed for the global formulas (with the form of \(G\phi \)). By defining the global obligation formula \(ofg(\phi) \) for the global LTL₁ formula \(\phi \), we have shown that \(\phi \) is satisfiable iff \(ofg(\phi) \) is satisfiable.

3. TOOL ARCHITECTURE

Figure 1 shows the architecture of Aalta tool. Aalta provides the interfaces of input and output, and the core modules that are composed of Parser, NNF Converter, checkers for LTL and LTL₁, and the SAT solver which is called by checkers.

Input: Aalta accepts the strings starting with letters as formula atoms. Besides, Aalta recognizes all propositional
operators and the temporal ones of X, X_w, U and R. Special-ly, it also recognizes the G and F operators which are defined as Gφ ≡ ffRφ and Fφ ≡ ttUφ. Table 1 shows the mapping between the formula operators and their representations in Aalta. Note that we use the symbol ‘N’ to represent the weak next operator X_w which is appeared in LTL_f.

Output: Aalta produces the satisfiability checking results (sat/unsat) for the input formula. If the result is satisfiable (sat) and the parameter “-e” is given, Aalta also shows an evidence satisfying the input formula. To represent such an infinite witness, Aalta uses the “(s)” to denote the infinite appearance of string s. For example, the output string “a(bc)” of Aalta actually represents the infinite word “a(bc)ω”.

Core Modules: In the architecture, a Parser is inte-grated to initialize the satisfiability checking process in Aalta by recognizing the input string. As our approach requires the formula under check in NNF form, the NNF converter is implemented to achieve the goal. Note that the converter automatically generates the corresponding NNF form for satisfi-ability checking over infinite or finite trace according to the given parameter (“-l” for LTL formulas and “-f” for LTL_f formulas.) Aalta launches the different checker (LTL or LTL_f checker) based on the given parameter.

SAT Solver: The SAT solver module utilizes the open-source Minisat solver\(^2\), and is invoked by the LTL and LTL_f checkers which implement the SAT-based algorithms we proposed in our earlier work. Minisat is seamlessly integrated as a part of Aalta rather than an external solver. Note that Minisat requires the DIMACS format (see Minisat tutorials) representing CNF clauses for input. We thus implement in Aalta a translation algorithm from boolean formulas to its CNF formatted by DIMACS.

The SAT Solver module is invoked in the following way. The main procedure computes the transition system of the input formula under check in an on-the-fly manner, and the corresponding obligation formulas are extracted for each new formula (state) generated. Then the obligation formula-s are passed to the Minisat and checked by the SAT Solver module. Several heuristics are designed to decide the satisfi-ability of the original formula based on the results of Minisat tool. If the heuristics cannot decide the satisfiability according to the results of SAT Solver module, the main procedure repeatedly processes on the whole transition system until it obtains the result.

4. EXPERIMENTS

In this section we show the comparison results between Aalta and other representing tools on LTL satisfiability check-ing over infinite or finite trace respectively.

We use the BlueBioU cluster\(^3\) in Rice university as the experimental platform. The cluster consists of 47 IBM Power 755 nodes, each of which contains four eight-core POWER7 processors running at 3.86GHz. Every tested tool occupies a unique node, which guarantees all tools are run in the same environment. The time is measured by Unix time command, and each test case has the maximal limitation of 60 seconds.

For LTL satisfiability checking performance, we select the existed tools, i.e. pltl\(^1\), TPR++\(^1\), NuSMV\(^1\), for comparison with Aalta. Note that NuSMV implements the BDD-based model checking and BMC (bounded model checking based on SAT), we do the comparison for both of the techniques, which is denoted as NuSMV-BDD and NuSMV-BMC separately in Table 2. We use the benchmarks called schuppen-collected in [4]. The corresponding checking costs (seconds) are displayed explicitly in Table 2. From the ta-

\(^1\)http://minisat.se/MiniSat.html

\(^2\)http://minisat.se/MiniSat.html

\(^3\)http://www.rcsg.rice.edu/sharecore/bluebiou/
Table 2: Comparison results on the Schuppan-collected benchmarks for LTL satisfiability checking.

<table>
<thead>
<tr>
<th>Formula Type</th>
<th>pltl</th>
<th>TRP++</th>
<th>NuSMV-BDD</th>
<th>NuSMV-BMC</th>
<th>Aalta</th>
</tr>
</thead>
<tbody>
<tr>
<td>/acacia</td>
<td>367.1</td>
<td>25.7</td>
<td>41.3</td>
<td>1.8</td>
<td>506.8</td>
</tr>
<tr>
<td>/alaska</td>
<td>5800.6</td>
<td>12641.5</td>
<td>7259.1</td>
<td>2797.2</td>
<td>3954.2</td>
</tr>
<tr>
<td>/anzu</td>
<td>3815.1</td>
<td>10729.7</td>
<td>12124.0</td>
<td>1093.2</td>
<td>5202.4</td>
</tr>
<tr>
<td>/rozier</td>
<td>1794.8</td>
<td>53234.0</td>
<td>15224.9</td>
<td>10676.1</td>
<td>3135.5</td>
</tr>
<tr>
<td>/schuppan</td>
<td>3079.8</td>
<td>4149.4</td>
<td>3838.8</td>
<td>4329.1</td>
<td>97.4</td>
</tr>
<tr>
<td>/trp</td>
<td>27475.5</td>
<td>3898.0</td>
<td>34533.8</td>
<td>23849.6</td>
<td>4392.2</td>
</tr>
<tr>
<td>Total</td>
<td>44576.2</td>
<td>84826.2</td>
<td>73030.5</td>
<td>44250.0</td>
<td>20626.4</td>
</tr>
</tbody>
</table>

Table 3: Experimental results on Schuppan-collected formulas for LTL\textsubscript{f} satisfiability checking.

<table>
<thead>
<tr>
<th>Formula Type</th>
<th>Aalta</th>
<th>Polsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>/acacia</td>
<td>4.9</td>
<td>609.3</td>
</tr>
<tr>
<td>/alaska</td>
<td>24.2</td>
<td>7326.9</td>
</tr>
<tr>
<td>/anzu</td>
<td>5727.8</td>
<td>5770.8</td>
</tr>
<tr>
<td>/rozier</td>
<td>2416.1</td>
<td>3526.2</td>
</tr>
<tr>
<td>/schuppan</td>
<td>232.3</td>
<td>1874.6</td>
</tr>
<tr>
<td>/trp</td>
<td>6838.4</td>
<td>30392.7</td>
</tr>
<tr>
<td>Total</td>
<td>15244.2</td>
<td>50038.2</td>
</tr>
</tbody>
</table>

Table 2 shows that usual approach to LTL satisfiability checking over finite trace (LTL\textsubscript{f} satisfiability checking) is to reduce it to standard LTL satisfiability checking over infinite trace \[3\]. We compare Aalta with Polsat \[4\] tool which implements this reduction approach. Note Polsat is a portfolio LTL solver which has integrated most of the existing LTL satisfiability solvers and uses the schuppan-collected benchmarks as well. Table 3 shows the comparing results between Aalta and Polsat. The unit of the checking cost shown in the table is also in second. We can see clearly that Aalta performs better than Polsat, with more than 3 times speed-up.

5. CONCLUSION
In this paper we present the Aalta tool, which is an LTL satisfiability checker over both infinite and finite traces. We compare the performance between Aalta and other off-the-shelf tools and the empirical results show that Aalta is a very competitive solver.

6. ACKNOWLEDGEMENTS
We thank anonymous reviewers for the useful comments. We acknowledge Moshe Vardi of his important contribution on this work. Geguang Pu is partially supported by Shanghai Knowledge Service Platform No. ZF1213. Jianwen Li is partially supported by SHEITC Project 130407. Jifeng He is partially supported by NSF Project No. 61021004. Lijun Zhang is supported by NSFC projects No. 6136136002 and 91118007, and by the CAS/SAFEA International Partnership Program for Creative Research Teams.

7. REFERENCES